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SUMMARY

A novel technique for similarity searching is introduced. Molezal®e represented by
atom environments, which are fed into an information-gain basedardéesglection. A
Naive Bayesian Classifier is then employed for compound dtzdsh. The new
method is tested by its ability to retrieve five sets divacmolecules seeded in the
MDL Drug Data Report (MDDR). In comparison experiments, thgorghm
outperforms all current retrieval methods which use two- and tlireensional
descriptors and offers insight into the significance of structuoahponents for
binding.
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1. INTRODUCTION

The question of how to describe similarity of molecules has bedoaneasingly
important over the last two decades and is likely to become ravesm important in

the future. There are a number of reasons for this tendency.

According to the 2003 report by the Tufts Center for Drug Developiiaiasi
2003], costs of a single new chemical compound until the point of ssibmito
approval has risen to US$ 802 million. This is due to high failuesria later stages
of drug development. Probably the “easiest cherries have albeadypicked” - drugs
for easily tractable targets have already been found. Furbneritis well known that
in vitro andin vivo screenings are very expensive, compared to so-caileidico
approaches.

Another major reason for the surge in similarity searchindneésnegative public
opinion with respect to animal testing, so much that this sesults ban in home and

personal care products in the European Union starting from 2009 [EU2603].

However, computers have become much more powerful and cheapetheviast
years, thereby allowingn silico screening using larger databases and more
sophisticated algorithms. Using appropriate similarity measuresight become
possible to predict properties like absorption, distributionabmdism, excretion or
toxicity (ADME/Tox) at an earlier stage of the research Ipipe reducing
expenditure per successful compound [van de Waterbeemd 2003]. Oniyotie
promising compounds will then be synthesized and screened, poyeyigddling a
higher fraction of active structures in the selected sulpsehigher survival rates.

In order to avoid animal testing, cosmetics and other consumer googsucies will
focus on their in-house databases of chemical compounds that headyalreen
tested for safety. Out of these compounds, some of them mighdglpossess the

desired properties, which could be detected by similaritschaay.

The rest of the thesis is structured as follows. In sectiarr@view of the literature on
molecular representation and molecular similarity searchingiven. Section 3

presents experimental details. Results are given irosettiwhich are discussed fully



in section 5. We draw conclusions in section 6 and outline possiblerfuebearch

directions in section 7.



2. LITERATURE REVIEW

Similarity searching is based on the “Similar Propertydiple” [Johnson 1991] that
states that structurally similar molecules - structurath va “similar” spatial
arrangement of “similar” functional groups - tend to havelamproperties, physical

as well as biological ones. All current drug design efforsbaised on this paradigm.

Similarity is a concept that is present in everyday lifg, & visual perception, and
has thus been subject to intensive psychological research [T\&8Ky. Many of the

ideas behind similarity measures currently employed in congwadt molecules are
rooted in psychology. An illustration of asymmetrical perceptiorsigfilarity was

given by Tversky [Tversky 1977]. He was asking whether Northre&owas more
similar to China, or that China was more similar to North Kofeaonsistent answer
(the former option of the two) was given by analysis of his 4abjects; consistent
with the ubiquitous finding that one representative of a claas@susually found to
be more similar to the class than the class being simithetmmember. This illustrates
the origin of asymmetrical similarity measures. Rouvray gjiee comprehensive

overview of similarity applications in the natural scienflRouvray 1992].

The definition of similarity with respect to molecules is metengent than that in
other fields. Basically it consists of mapping “chemicalcgpda representation of a
molecule in structural or some property space) to one-dimensiorta gfth entities
of real numbers. ldeally similarity measures for molecbielsave proportionally to
all physical and biological properties of molecules in this esgntation. In other
words, it groups together all molecules with very similargital and biological
properties in a confined area of chemical property space. Itigaawe are far away
from reaching this goal. As we will see in the following pmamhs, molecular
representations have to this day only been applied to specific psoblemolecular

similarity.

Similarity searches complement earlier substructureelkeaifHagadone 1992] which
only consider presence or absence of specific features but didvaloate global

properties and overall shape. Compared to substructure seasichiésty searches



are both more general and more comprehensive. They are moral dgnemploying
abstract representations of molecules or molecular propartéeby being capable of
using fuzzy matching techniques. Furthermore they are more coemgred as they

(usually) comprise features derived from the whole molecule wwmheideration.

Molecular similarity calculations are done in three stepgrasentation of the
molecules in descriptor space, feature selection, and commpari$e literature
review in the following paragraphs will focus mainly on repnésgon and

comparison of molecules.

a) Representation of Molecules

A variety of methods to represent molecules in chemical speec&nown. Here we
divide them into one-dimensional descriptors, topological indicegmeat-based
descriptors, field-based descriptors, subshape descriptorgesddeaved descriptors,

affinity fingerprints, spectra-derived descriptors, and back-ptalde descriptors.

The first group of descriptors give one-dimensional property desimio one-
dimensional linear representations of the whole molecule. Onendional property
descriptions assign only one number to the molecule. This numberallyuderived

from physicochemical properties. This provides the basis forahlariselection
structure-activity regression techniques. Since no geometiid@rmation is
contained in the descriptor, they are most commonly employed fqrdkction of
physical properties as opposed to receptor binding. Good examples using this
descriptor are clustering of compound databases [Downs 1994] and seataba
comparisons (distinguishing between drugs/non-drugs [Jain 1998, Lipinski 1997
Lipinski 2000]).

One-dimensional linear representations attempt to reprdmenidlecule as a linear
tree where nodes represent atoms (or groups of atoms). Thimilar S0 the
representation of proteins in one-dimensional sequences of amitso &cicompare

molecules, algorithms similar to protein sequence alignments caappieed to



compare two molecules [Dixon 2001]. An overview of methods to ddinesar

molecular descriptors is given in [Baumann 1999].

Topological indices and other graph-based descriptors constitutecthredsgroup of
descriptors. Topological indices are integer or real-valued nuntib&trsare derived
from the connectivity matrix and sometimes they contain additigoraperty
information of the molecule. They are generally divided intoetrgenerations of
indices. The first generation, such as the Wiener indexjenived from integer graph
properties and are themselves integers. Second generataes, such as the
molecular connectivity indices, are real numbers derived fromagémt graph
properties whereas indices of the third generation are rdad/aaumbers derived
from real valued graph properties. Several hundred alterriapeéogical descriptors
have been published to this day [Wilkins 1980, Randic 1979; Balaban 1988].
important aspect of topological indices is that they are dérsaely from the
connectivity matrix of a molecule and thus do not consider both conformaind
three-dimensional structure. For a recent review on topologidalas, see [Balaban
1995] and [Estrada 2001].

The next group of descriptors are fragment or substructure basedpubescr
Maximum common substructure (MCS) searches are among thesteaulestructure
searching algorithms used [Cone 1977]. These searches tend toebsotisuming
due to the NP-complete nature of the problem which in the waesago becomes
exhaustive. Recent advances can be found in [Barnard 1993]. Substractlyals is
often dubbed Free-Wilson-Analysis as Free and Wilson published one eatlye
works in this area [Free 1964, Cramer 1974]. It has beentae acea ever since as
more recent publications show [Gillet 1998]. Kier and Hall [HER5] extended
topological descriptors to include electronic and valence stédemation in their
“electrotopological” descriptors, an approach that has later éddended to “E-state
fields” [Kellogg 1996]. Rarey and co-workers [Rarey 1998] represwi¢cules as
one-dimensional, potentially branched, sequences which they tdatlre Trees”.
Other examples for fragment-based descriptors are [Takah@88j Barnard 1993]
using reduced graphs, [ Faulon 1994, Faulon 2003a, Faulon 2003b, Visco Jr. 2002],
using “molecular tree” fingerprints and [Xing 2002, Xing 2003, Bender 20614lg

related “Atom Environments”. “Mini fingerprints” also containsivhich denote the

9



presence or absence of fragments [Xue 2002, Xue 2001, Xue 1998}iedv of
fragment-based measures of molecular similarity is givgBath 1994] which finds

that a description using four-atom fragments is most effective

The group of field-based descriptors differs from the previous grotipat they use
three-dimensional information of a molecule for their derivatiBacause of the
number of data points (“grid points”) that are necessary $enaible resolution, they
are computationally more demanding than two-dimensional methoelsl-ldased
descriptors generally require alignment of the molecules twobwared that is only
trivial in case of analogue compounds. Many different methods lbeee developed
in this area with the broad separation being between quantunamezhmethods
and non-quantum mechanical methods. Quantum Similarity has been intraduced
the early 80’s [Carb6 1980] and since then it has been subjectadrsive research.
Hodgkin [Hodgkin 1987] later introduced a related index that took intoustanot
only electron distribution (such as the Carb6 index) but also eled¢masity. Walker
[Walker 1991] and Good [Good 1992, Good 1993] replaced the grid approach with a
Gaussian approximation. This lead to significant increase inornpeshce.
Furthermore it solved problems with local minima while perfognimolecular
alignments. The Gaussian representation has later been Igedker® describe
molecular shape [Grant 1995]. For a review on quantum simjlaety [Carbo-Dorca
1998], for a basic introduction to the subject see [Carbo 1992]. Oathie hand,
non-quantum mechanical grid based descriptors have been introduced latethe
1980’s with the Comparative Molecular Field Method, CoMFA [Gzart088]. This
method was also the basis of Klebe’'s Comparative Molecutailasity Analysis
(CoMSIA) approach [Klebe 1994, Klebe 1998].

The (sub-)shape based descriptors group describe the shape of alenudé¢dn one
fragment, but instead use several small features to deshebenolecules and find
related structures by “circumstantial evidence”. These metlads free from
alignment problems and are usually realized with a bit stregresentation of
features that suits computer treatment. They are oftenreef to as multiple-point-
pharmacophores: two-point pharmacophores (2PP, [Sheirdan 1989, Good 1995b,
Sheridan 1996]), which are known as atom pairs and represent alll@gqssiis of

atoms in the molecule, three-point pharmacophores (3PP, [Gund 197i& B9,
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Nilakantan 1993, Pickett 1996, Mason 2001, Martin 1992]) which allow foor@ m
detailed representation of interatomic distances, and four-poinhpbaphores (4PP,

[Mason 1999, Duca 2001]) which are able to distinguish betweeneggomsomers.

The surface-based group descriptors focuses on the commonly dcasgtenption
that ligand-receptor binding is mediated by the molecular suréageby the Van-
der-Waals surface.

* Gaillard et al [Gaillard 1994] devised a method to describe mlalec
lipophilicity potential and validated it by predicting logP values.

» Stanton and Jurs [Stanton 1990] introduced the concept of “charged partial
surface area structural descriptors” and derived descriptésisiding surface
charge from it.

« Jain’'s Compass method [Jain 1994] is able to take severacubes and
several conformations into account, but it needs a user-definedctirigra
pharmacophore guess. This approach has also been used for seleetigg libr
subsets in its extension called Icepick [Mount 1999], where several
conformations of the molecules to be compared are calculatethanidree-
dimensional structures are docked into each other.

» Jain [Jain 2000] introduced the concept of “morphological similavtyith is
defined as a Gaussian function of the differences in molecudace
distances of two molecules at weighted observation points on a urgftdm
compared to field-based methods, this method has the advantageotha
alignment is necessatry.

* A novel method for classifying similarity of molecules is penied by using
hashkeys of the molecular surface, compared to a panel afermege
compounds [Ghuloum 1999]. Applied to several data sets, the descigtion
found to capture enough information for the prediction of ADME properties
and target binding. Hash codes have already been applied instiyelneifore
[Ihlenfeldt 1994], but only for structure storage and not for straedgtivity

relationships.

The group of affinity-fingerprint based descriptors compare a liganal panel of

reference receptors and scores each ligand by docking it inko reeeptor. The
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resulting affinity vector can then be used to create a sitgiladex for the group of
ligands among each other. This approach is computationally derganminause
every ligand molecule has to be docked against every reéereceptor molecule. On
the other hand, the “expertise of the receptor” is the crywi@berty for finding
ligands in vivo, so that more meaningful results may be reiwi¢som this approach.
In vitro fingerprints were first introduced by Kauvar [KauvE®95] and shortly
afterwards followed by in their in silico counterparts [Brié896, Lessel 2000]. The
latter were for example employed in library design [Dixon 1998]afrecent review
see [Briem 2000].

The group of spectra-derived descriptors uses a “natural” wagetive a one-
dimensional representation of a molecule. X-ray and electréractibn as well as
infrared spectra have been used in this sense. The resultinjaspave to be
converted into descriptor space, e.g. by calculating its @erssings. The earliest
work in this area was done by Soltzberg [Soltzberg 1976], who used iaolecu
transforms to calculate the diffraction pattern from an X-rayivdd three-
dimensional structure. Electron diffraction was also used m 3D-MoRSE
(Molecule Representation of Structures based on Electron difindctipproach
[Schuur 1996]. The first descriptor calculated from the vibratiospectra of
molecules is the EVA descriptor [Ginn 1997]. Here, fundamenggjuigncies of the
vibrational spectrum are calculated and used for the comparisomletcules. A
different approach [Schoonjans 2001] defines fuzzy peak areasive deolecular
features from an infrared spectrum, followed by principal compormalysis.
Although spectra are a “natural” way to convert a molecule imdoeadimensional
representation, small changes often introduce major chandgles spectrum and the
representation in descriptor space. These changes often ndieult to use this

approach as a similarity index.

The last and most recent group of molecular descriptors are tkeptmmectable
descriptors. Those descriptors can be projected back on the mokbatle®re used
to derive the descriptor in the first place and often hint aitpevhere molecules can
be optimised with respect to bioactivity. The first back-pitajele descriptor was
published by Pastor and co-workers [Pastor 2000] and was called G&RDI

INdependent Descriptors). First, a set of simplified mobcuhteraction fields
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around the probe molecule is calculated. Commonly, a hydrophobic [wé&h8,(an
oxygen probe (O) and a nitrogen probe (N1) are used to distinguish between
hydrophobic, hydrogen bond donor and hydrogen bond acceptor properties,
respectively. In the second step, an alignment-independent desdmgéed on
autocorrelation is calculated. Another descriptor that falls this area is the MaP
(Mapping Property distributions of molecular surfaces) descript@f[2003]. This
algorithm consists of three steps. Equally distributed sudat#s are computed first

and then molecular properties are projected onto this surfader &fat the
distribution of surface points and properties is encoded into a dtmsllly and
rotationally invariant molecular descriptor which is based onaladistribution
functions. An important feature of back-projectable descriptdisaisthey are easy to
interpret.

b) Comparison of Molecules

Comparison of molecules is usually performed using either sitgileoefficients or

machine learning approaches.

Several dozen similarity coefficients have been publishedila®ity coefficients for
the comparison of bit strings of molecules can be broadly dividiedassociation,
correlation and distance coefficients. Association coefficient® capture fragments
common to the two molecules to be compared and give a restk irange [0,1],
where 1 represents identical molecules. The Tanimoto ceeifics an example of
this class. Correlation coefficients give values in the seange and calculate the
correlation between two vectors representing two moleculesP&heson coefficient
is @ member of the class of correlation coefficients. Degacoefficients focus on
differences between two molecules and are a measure ohithsgy, giving results

in the range [0, + inf]. One example is the Euclidearnddise.
Early work by Willett [Willett 1986] concluded that similaritalculation based on

the Tanimoto coefficient on average performed best, when adb@b similarity

coefficients were compared. A group of 22 different similaciigfficients has been

13



evaluated by Holliday [Holliday 2002], who found that some of the aoeffis were
exhibiting similar behaviour and that they could be grouped into segkrsters.
Hubalek [Hubalek 1982] lists 43 association coefficients, and found®€hat those
were synonymous to other coefficients. The remaining 23 casftEiwere clustered

into five groups.

On the other hand machine-learning approaches can be used toeampecules.

Kernel Methods attempt to predict the output of a continuous ougpiatble given
continuous input variables. In drug-design, usually only the distincétween active
and non-active entities is to be made. Then binary kernel netiredised, which can
predict the output variable based on binary input vectors. One malnlication on
binary kernel methods was published by Aitchinson [Aitchison 1976]. Heisties
the concept in general terms. More recently this concept leasrbeived by Harper

[Harper 2001] and applied to a set of monoaminooxidase inhibitors.

Binary QSAR is related to binary kernel discrimination in thaiso accepts binary
input values (e.g., presence/absence of structural keys), bkerhel is exchanged
for a Bayesian classifier [Labute 1999, Gao 1999].

Bayesian regularized artificial neural networks were emplddden 1999] to
derive QSAR models, and perform better than regression methodsehaot able to
model nonlinearities in the model.

Artificial Neural Networks (ANNs) have been used to distinguialg-like and non-
drug-like molecules using a substructural analysis [Jain 1998]n&darplus [So
1997] used electrostatic and steric properties at grid points édlinfig a genetic

artificial neural network in order to develop a QSAR model.

Support Vector Machines (SVMs) attempt to learn the maximunrassmi boundary
compared to Neural Networks which do not optimise the decision bourfddmy i
prediction performance does not change. Compared to C5.0 decisiomuéetayer
perceptrons and other neural networks [Burbidge 2001], SVMs nedddiessg time

and achieve slightly better prediction performance. Using S\WMarmuth et al
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[Warmuth 2003] implemented a concept of active learning. For aihi@ications of

Support Vector Machines in chemometrics, see [Czerminski 20€drst 1998].

King [King 1992, King 1995] and Srinivasan and King [Srinivasan 1999]iegpl

inductive logic programming (ILP) to the field of activity mblecules.

A general overview of structural representation, moleculailasity and virtual
screening can be found in [Artymiuk 1992, Bures 1994, Livingstone 200@id&me
2002, Bajorath 2002, Bajorath 2001, Willett 1992, Willett 1995, Wille@8, Willett
2000, Walters 1998, Doucet 1996, Gillett 1998b, Good 1998]. An attempt to

characterize molecular similarity methods is given in [Johri91].

The method we present in the following section 3 is based on the 2siomal
structure of molecules. It is derived from the connectidbld, thus not dependent on
conformation and translationally as well as rotationally amshfarmationally
invariant. Using the classification given above, it belongfhéogroup of subshape-
based molecular representations, combined with a machine leapgrapeh in the

form of a Naive Bayesian Classifier for classificatiorstfictures.
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3. EXPERIMENTAL DETAILS

a) Descriptor Generation / Molecular Representation

We use atom environments [Xing 2002] as a molecular representatom
environments are similar to Signature Molecular Descriptoasifff 2003a; Faulon
2003b; Visco Jr. 2002; Faulon 1994]. They are translationally and rotdional
invariant. Furthermore they do not depend on a particular conformatitheyasre
calculated from the connectivity table. This makes gemgyaiom environments less
difficult compared to alignment-dependent approaches. Anotheribentf atom
environments is that they are easily interpretable, as tbegymble the chemical

concept of functional groups.

We calculated atom environments in a two-step procedure igee R):

1. Sybyl atom types [Clark 1989] are employed for the derivatiorthef
environments. These are force-field atom types, which impli¢riiude
molecular properties such as geometry. An individual atom fingergint
calculated for every atom in the molecule. This calculatigreiformed using
distances from 0 up to n bonds and keeping count of the occurrenites o
atom types. The maximum distance n for descriptor generatidrelkasvaried

from 1 to 3 for parameter optimization; details are givesection 3e.

2. A count vector is constructed with the vector elements bmngts of atom
types at a given distance from the central atom. Eveny a described by
exactly one count vector resulting in molecular atom environmerdripnigts
in which the number of atoms in a given molecule equals the nurhibeunt

vector entries in the fingerprint.
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Figure 1. lllustration of descriptor generation step, applied to an arontatibon
atom. The distances (“layers”) from the central atom arengin brackets. In the first
step, Sybyl mol2 atom types are assigned to all atoms imdihecule. In the second
step, count vectors from the central atom (here C<0>) up teea distance (here two
bonds from the central atom apart) are constructed. Molecutn Anvironment

fingerprints are then binary presence/absence indicators of geattrs of atom

types.

b) Feature Selection

The information content of individual atom environments was computed) tise
information gain measure of Quinlan [Quinlan 1986, Glen 1992]. For ecylarti
descriptor, higher information gain is related to better separagtween active and

inactive structures, for example.

The information gain, |, can be given by

S/

P

Where

S=-> plog,p
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S is the information entropy; |S| is the total number of dasa Seis the information
entropy in data subset v; and||iS the number of data sets in subset v.

In each run the number of selected features was varieg®etlO and 100.

c¢) Classification

A Naive Bayesian Classifi¢Mitchell 1997] was employed as a classification tool.
The Naive Bayesian Classifier provides a simple yet simglysaccurate machine-
learning tool [Mitchell 1997]. Trained with a given data séicl consists of known
feature vectors (F) and their associated known classes {fi)Naive Bayesian
Classifier predicts the class that a new feature vdmtangs to as the one with the

highest probability ofP(CL,, | F) which is given by

P(CL,)P(F |CL,)

P(CL, |F)= P(F)

(1)

Where

P(CLy): probability of class m

P(F): feature vector probability and
P(F|CLx): probability of F given Cl,
m : class.

In the Naive Bayesian Classifier

Where, fare the feature vector elements. Hence faf Cl1) becomes

IID(F)

P(CL, [F) =

In this work the data are classified into two céssgactive and inactive, here referred

to as 1 and 2 respectively). Therefore
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P(CL)[] P(f; ICL)

P(CL, |F) = o)
and

P(CL,)[] P(f, ICL,)
P(CL, |F) = ‘P(F)
_ PLIF) P(CL] P(f, 1CL)

P(CL,|F) P(CL)[]P(fiICL,)

_, P(CLIF) _ P(CL) o P(1 L) >
PCL, [F)  P(CL,) I P(f 1 cL,)

We use this equation to do the classification akkmolecules are represented by their

feature vectors F and the resulting rat';(g::1 || ';)) are sorted in decreasing order.
2

Molecules with the highest probability ratios aresiniikely to belong to class 1 (here
the class of active molecules). Molecules with thwdst values are most likely to

belong to class 2 (the class of inactive molecules)

Note that the actual probabilityP(CL, |F)can be easily computed from

P(CL | F) _
In(P(CL2 | F)) based on the fact tha®(CL, | F) + P(CL, | F) =1.

d) Compilation of Dataset and Pre-processing

For evaluation of the algorithm, 957 ligands extradiesn the MDDR database
[MDL] were used[Briem 2000]. The set contains 49 5HT3 Receptor amigtgo
(from now on referred to as 5HT3), 40 Angiotensin Goting Enzyme inhibitors
(ACE), 111 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductadebitors (HMG),
134 Platelet Activating Factor antagonists (PAF) and W@mboxane A2 antagonists
(TXA2). An additional 547 compounds were selected randoamyl did not

(according to MDDR) belong to any of these activity classes.
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Structures were downloaded in SDF format and convertegay 81012 format using
OpenBabel [OPENBABEL] 1.100.1 with the —d option tdede hydrogen atoms and
default mol2 atom typing. Atom environment fingerprime&re then calculated

directly from mol2 files.

e) Calculations

Two separate validations of the method presented herepeei@med. In the first
validation, cross-validation with random selection of quaojecules was carried out
to optimize the parameters related to descriptor generatiofleatute selection. A
20-fold cross validation study selecting randomly fivéeny structures for query
generation and calculation of the average enrichment factarsedirst 20 and 50
molecules of the sorted library has been performed. Sdiection of five query
structures is a realistic number if few ligands of aegitarget are known. In order to
illustrate the influence of the number of structures chdsegenerate the query on
search performance, 20-fold random selection of 3, 5 andtrii@tures has been
performed, selecting 40 features in the feature selection Atemdividual hit rate
was calculated for each set of compounds based on the nunmbeleoules within its
ten nearest neighbours, which belong to the same aciétys as the query
compound. To create a query from multiple molecules,viddal probabilities
(relative frequencies) of features from a set of moleculesalculated and used in
the feature selection step described in section 3b anddhe Bayesian Classifier
described in section 3c. The maximum bond distance for gearer@it molecular
descriptors, n, was varied from 1 to 3. In each run, thmber of selected features
was set to 10, 20, 30, 40, 50, 70 and 100, startitly tve features associated with
highest information gain. To examine the influence afy\vieequent and very rare
features, this series of experiments has been repeatedavalight modification.
Using identical settings for maximum bond distance andber of selected features,
only features occurring at least three times, but nanore than max-3 molecules
(with max being the number of molecules within the pasitiata set) were selected.

To do so, features were chosen starting with those pasgébsi highest information
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gain as above, but skipping rare and frequent featuresfiagd here until the preset
number of features was selected. For the best performdtgré selection, cumulative
recall plots were calculated for all five datasets of active cang

In all calculations presented here, the inactive dataset cmgtaith structures except
those of the active class in each calculation was spiwansubsets of equal size to
create independent training and test sets. Each similartylaabn was carried out
twice, using the active query and each of the two sulasetsscoring the remaining
active compounds and the inactive compounds not used &agerthe model. The
average score of the active structures from both runcateslated. Both subsets of
scored inactive structures and the set of active structutbsassociated average
scores were concatenated to give the complete scored lsingfounds used for
further processing. As an example, for one validationusing a sample of the ACE
inhibitor dataset we have drawn the query molecules, sdléetgment features and

highest scoring molecules.

In the second validation, for each of the 383 active compoointie five classes of
active compounds its ten nearest neighbours were calcidased on the similarity
measure proposed in sections 3a — 3c. The maximum distancdes$ariptor
calculation was set to 2 as it produced the best resuttseifirst validation run as
well as in additional validations which were performed. ldahtvalues for selection
of features as mentioned above have been applied. Exclusioaqaent and rare
atom environments was not applied due to the use ofesmgery molecules. An
individual hit rate was calculated for each compound basedhe number of
molecules within its ten nearest neighbors, which betoribe same activity class as
the query compound. Enrichment is observed when theatétamong the nearest
neighbors is higher than the fraction of the activitysslander consideration in the
whole data set. Enrichments have been averaged over all clhaséigseocompounds,
and the result was compared to that of other methods.

Note that the nearest neighbour protocol of Briem [Br&&®0] has been followed in
this validation to make it easy to compare the performafcaur algorithm with

commonly used methods.

21



4. RESULTS

For the first validation, the influence of the maximum dalistance for creating the
atom environment descriptor and the influence of the nunfbezlected features on
the average enrichment factor among the first 20 and tte5fr compounds of the
ranked database are given in Table 1. Using atoms wpotbdnds from the central
atom for generating atom environment descriptors (n =@&jymes best results with
enrichment factors of between 11 and 6.5 in the first 20 oangs and between
about 4 and 2 in the first 50 compounds. Using threersafor construction of the
descriptor still gives enrichment of more than 3 in nueges of feature selection
whereas using only the first layer adjacent to the ceatash produces virtually no

enrichment, independent of the method used for feature selectio

Number of Selected Enrichment Enrichment Enrichment Enrichment Enrichment Enrichment
Features Top 20,n=1 Top 50,n=1 Top 20,n=2 Top 50,n=2 Top 20,n=3 Top 50, n=3
10 0.00 0.00 9.56 3.82 3.50 1.40
20 0.00 0.00 7.80 3.12 3.50 1.40
30 0.00 0.00 9.95 3.98 3.50 1.40
40 0.00 0.00 11.06 4.42 3.50 1.40
50 0.00 0.00 10.42 4.17 2.92 1.17
70 0.00 0.00 9.45 3.78 3.11 1.24
100 0.00 0.00 6.52 2.61 0.19 0.08
10, m>2, m<max-2 0.00 0.00 7.33 2.93 3.50 1.40
20, m>2, m<max-2 0.00 0.00 8.58 3.43 3.50 1.40
30, m>2, m<max-2 0.00 0.00 9.20 3.68 3.50 1.40
40, m>2, m<max-2 0.00 0.00 10.28 4.11 3.50 1.40
50, m>2, m<max-2 0.00 0.00 10.13 4.05 3.50 1.40
70, m>2, m<max-2 0.07 0.03 8.99 3.59 3.50 1.40
100, m>2, m<max-2 0.07 0.03 4.89 1.96 0.19 0.08

Table 1. Enrichment factor averaged over all five classes of active congs upon
varying the number of selected features and the maxinggtindn, used to create the
atom environment descriptor. A fixed number of featuresevgelected and rare and

frequent fragments were excluded. This is denoted by m=®ax-2, meaning that
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features had to occur at least three times, but at madtessas the total number of
active molecules (max) minus three times. In situatwhere very low enrichment
factors were obtained many molecules were assigned identicabsthus producing

artefacts (enrichment factors of 0) in this table.

A visualization of enrichment factors, which depend on thenbver of selected
features, is given in Figure 2. In this case, the Hewdl for descriptor generation, n,
has been set to n = 2 because it performed best as shovaile 1. Exclusion of
frequent and rare features does not perform as well as selet#ofixed number of

features, and it is not shown in the figure.
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groups of active compounds

0.00 : : : : : :
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Number of Selected Features
Figure 2. Enrichment factor, averaged over all five groups of actmmpounds,
using atoms up to 2 bonds apart from the central atornotwstruct the atom

environment descriptor and a variable number of selecteddsdtr classification.

We have found that feature selection has its optimumeleat®n of 40 features with
respect to enrichment factors observed among the firggnd0among the first 50
highest-scoring structures of the sorted libraryeWer or more features are selected,

performance of the algorithm continuously decreases.
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The influence of the number of structures chosen to genémnatquery on search
performance is shown in Table 2. Results using singletsres to generate the active
query are presented later and are included here for completenesgsry case except
one (going from 5 to 10 query structures using ACEibitdrs), performance
improves as the number of compounds used for query g@rerincreases. The
average deviation in performance between different sets of quampounds
decreases if the size of the query data set is increagath,Ahe only exception is if

the number of ACE inhibitors used to generate the gigemcreased from 5 to 10

structures.
No. of M ean
Std.- Std.- Std.- Std.- Std.-
query 5HT3 ACE HMG PAF TXA2 Mean Std.-
Dev. Dev. Dev. Dev. Dev.
structures Dev
1 565 426 6.40 296 790 275 7.15 2.25 6.40 3.27.706 3.10
3 855 173 6.70 264 930 092 9.15 157 8.30 1.13408 1.60
5 925 1.02 910 064 950 083 9.15 0.82 8.15 1.0403 9 0.87
10 930 103 880 151 970 057 925 0.72 8.95 0.76.209 0.92

Table 2. Average hit rates among the ten nearest neighbors in a \atdation
study. Shown here are the hit rates and the standard desiatinong different data

set sizes used to generate the query.

For the best performing method using 40 features \wghhighest information gain,
cumulative recall plots are given in Figure 3. These plot® walculated using the
20-fold random selection of five queries for ranking af tiorary and screening for
the remaining active compounds. The five datasets can beieldssib two groups:
The 5HT3, HMG and PAF datasets belong to one groupoat®e of their active
molecules are found only after evaluating half of theesblibrary. ACE and TXA2
belong to the second group with all active molecules fousltiwithin the first 40%
of the sorted library.
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Figure 3. Cumulative recall plot of all five datasets, using atarpsto two bonds
apart from the central atom for descriptor generation an@éaQres associated with

the highest information gain for classification.

In order to gain an insight into the algorithm, queryenoles, selected features and
the highest scoring structures of the sorted libramehbeen plotted for a sample run
using angiotensin converting enzyme inhibitors (ACHibitors). The design of ACE
inhibitors originally followed the hypothesis that AGtad binding site homology
with carboxypeptidase-A [Cushman 1977]. A number deraction sites were

proposed based on analogue design, shown in Figure 4.
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Figure 4. Snake venom peptide analogue with putative binding motihgotensin

used in early compound design [Cushman 1977].

A recent crystallographic stuay an ACE inhibitor, lisinopril (N2-[(S)-1-carboxy-3-
phenylpropyl]-L-lysyl-L-proline), has revealed the himgl site interactions in some
detail [Natesh 2003]. Much of the originally deduced gdsite topology is seen in
the crystal structure with some notable differences ssctha absence of the C-
terminal carboxylate arginine interaction. The selectioreafures associated with a
significant information gain in separating the classes ot A@d non-ACE inhibitors
can be compared with the crystallographically determinadifg motif. It may be
expected that those interactions that are seen crystallicatiphmay also emerge
from the analysis of the analogues as being important.

The 5 molecules used to construct the query are showigume 5, the 10 selected
features giving the highest information gain are giveable 3 and the 10 highest
ranked structures from the sorted library are showirabie 4.
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Figure5. Five active molecules from the dataset of ACE inhibjtosed to construct

the query and perform feature selection.
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Table 3. Ten features associated with the highest informatiamsgaom a sample run

using 5 inhibitors from the ACE dataset.
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Table 4. Top 10 ranking molecules of the sorted library. Gfuhese, seven are active

ACE inhibitors and three are inactive molecules in thipaess

The selected features, given in Table 3, possess carbagenitas well as oxygen
atoms as central atoms. Some analysis of the selected feaithe®spect to the
experimentally determined interaction of ligands wittie ACE binding site is given

in the discussion section.

31



In the second validation, the number of active molecale®ng the ten nearest
neighbours of each individual active molecule from each datasetcalaslated

following the protocol of Briem and Lessel [Briem 200@kature selection was
performed selecting 10, 20, 30, 40, 50, 70 and 100 featditsates, averaged over

all five classes of active compounds are given in Figure 6

5
3
2
1 E
0 \ \
10 20 30 40 50 70 100

Number of Selected Features

Mean Hit Rate
D

Figure 6. Mean hit rates among the ten nearest neighbours of teenBiata set,
averaged over all five classes of active compounds, dependirigeonumber of

selected features.

An optimum can be seen at the selection of 20 features.r proess features are
used for classification, performance declines continuously.ifidividual hit rates for
each group, using the best-performing selection of 2Qrestare given in Table 5.
The average number of active compounds among the top I&draokpounds varies
from about 5.65 (5HT3) to about 7.90 (HMG), with ae@l average of 6.70. These
numbers, taking into account the variable number off@diructures in each active
subset result in enrichment factors between 5.14 (PAF)L&r&l(ACE). The overall
average enrichment factor calculates to 8.48, which is signily higher than the

value of 1 that would be achieved in a random selection.
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Performance of the Atom Environment Approach, Sele@h§eatures

Group of Active Compounds 5HT3 ACE HMG PAF TXA2 Oakr

Expected Hit Rate 0.50 0.41 1.15 1.39 0.50 0.79

Average Number of Active
Compounds Among Top 10 5.65 6.40 790 7.15 6.40 6.70

Ranked Compounds

Enrichment Factor 11.0 15.6 6.87 5.14 12.8 8.48

Table 5. Performance of the Atom Environment Approach by meéagumean
sample hit rates of the ten top-scored compounds in thtedsait list. Feature
selection was performed selecting 20 features associatecheitiighest information

gain.

The nearest neighbour protocol of Briem [Briem 2008% lbeen followed in this
validation to enable ease of comparison of the algongérformance with established
methods. The methods used for comparison are Feataes TRarey 1998], ISIS
MOLSKEYSJISIS], Daylight Fingerprints [DAYLIGHT], SYBYL Holgram QSAR

Fingerprints [SYBYL] and FLEXSIM-X [Lessel 2000], FLEX8-S [Lemmen

1998] and DOCKSIM [Briem 1996] virtual affinity fgerprints. Feature Trees
represent molecules as trees (acyclic graphs), whiclsursequently matched for
comparison. In current versions, FlexX interaction peoéihd Van-der-Waals radii
have been used as descriptors and a size-weighted rafragofients is used to
calculate a similarity index. ISIS MOLSKEYS use 166 pfiedéel two-dimensional

fragments for describing a structure. Daylight Fingetpriare algorithmically

generated and describe atom paths of variable length: taepamonly folded and a
1024 bits long bit string is used. Hologram QSAR isatension of 2D fingerprints
and additionally includes branched and cyclic fragments alsase$tereochemical
information. For all 2D and 3D descriptors, Euclideanadises were calculated for
each possible combination of test ligands. The performairibe algorithm presented

here compared to established methods is shown in Figure 7
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Figure 7. Mean sample hit rates of the Atom Environment approatdck}y in
comparison to the methods applied by Briem (light greye Performance of the
Atom Environment approach is shown using single queres randomly selected
subsets of five query molecules.

Shown here are mean sample hit rates as averaged over atlafsges of active
compounds. Using one query structure, this methodedaims all three virtual
affinity fingerprint algorithms as well as two of theva-dimensional methods,
Daylight Fingerprints and SYBYL Hologram QSAR Fingéngs. It performs as well
as ISIS MOLSKEYS fingerprints and is only (marginallgiitperformed by the
Feature Tree approach. The top three methods are of compaefdemance,
however the atom environments approach additionally deducse tlragments
having the greatest influence on similarity and is sigaiftly faster than Feature
Trees and therefore of utility in searching larger databases

Using five query structures, the Atom Environment appr@ettieves a mean sample
hit rate of greater than 90%.
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The computation of molecular fingerprints was implemernitedC programming
language and was able to process about 1000 molecules per sacfEntium 1l1-
1GHz workstation. Feature selection and scoring was ingsieed in Perl and was
able to evaluate one molecule against the 956 remaining codgotithe dataset in

one second, using identical hardware.
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5. DISCUSSION

The first series of runs was performed to optimize paramefetise algorithm for
typical database screenings where several active compoundsoane. s Table 1
shows, the algorithm only gives sensible results when dtom environment
descriptor is constructed using atoms up to two bopdsg &rom the central atom. If
less than two bonds are considered, atom environnaeatambiguous and do not
capture enough information about the atom environmentot&rthan two bonds are
considered, they tend to become unique so no generalizatpability is acquired.
This result is in agreement with the results found by dradt al. [Faulon 2003;
Faulon 2003b]. Optimum performance is found with thec®ln of 40 features. This
is the result for queries derived from five query structares applies across the five
different sets of active molecules used. Fewer featuremtdallow the classification
of each molecule reliably (by recognizing a certain numbés @tom environments)
and more features appear to introduce noise into the sytesreducing its

classification ability.

The performance of the algorithm generally increases ierand more structures are
used to generate the query (Table 2), as well as the sfasheldation in performance
between different sets of query structures decreases. Usmgydiery structures,
Atom Environments outperforms other methods by a largegim (Figure 7), giving
mean sample hit rates of about 90%. These hit rates areiractiydcomparable,
because information from multiple structures is used tonditate the query.
Nonetheless, it shows that the algorithm is capable oflingnohformation from
multiple molecules reliably. For real-world applicationsafipears that all active
molecules across the range of structural diversity coelldded in order to train the

classifier used in this method.

The five datasets used can be classified into two groupsidmgroup, comprising the
5HT3, HMG and PAF datasets, hits are still found amlomger ranked molecules
(Figure 3). Apparently, there are molecules in these groudatasets which do not
possess close analogues in the training and the tebt & other group, comprising
ACE and TXA2, all active molecules are easily found m finst half of the focused
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library. The molecules in these classes of active compowaas £ be more similar

to each other.

Overall the selection of fragments of ACE inhibitorerss consistent with the
binding information deduced crystallographically [Nat@€i93]. The five fragments
associated with the highest information gain given in T&bleorrespond to the
binding motif of enalapril and captopril including thazbinding site and the S2 and
S1 sites in the top rank. Among the 10 highest scoriolgcenles of the sorted library
listed in Table 4, seven are known active ACE inhigitahile three are not tested
with respect to ACE inhibitor activity. The inactives {alin of course, may be active
— the data on these molecules in MDDR do not include A&G&ay results) are
peptidic, larger than small molecule analogues and contain npeptidic

environments common to the natural substrates. Eliminafisnch peptidic moieties
would give (in this case) an ideal result. A penalty fatdomolecules larger than the

probe molecules (a scoring relative to size) could be used.

When calculating the hit rate of the ten nearest neighlbwiuesch individual active
molecule (i.e. using one molecule to retrieve its neightbdrom the remaining
database), an optimum in classification is obtained if 2Qifeatare selected (Figure
6). This is a different result from that observed st runs where five molecules are
used to derive the query. In those cases, the optimataréenumber was seen to
increase to 40 features. In single molecule queries, ones aoiecule containing
only a small number of atom environments is used. An iseréa the number of
features thus exceeds the number of environments presemtamy molecules.
Therefore, there is no gain in including additional fezgu

As described in Table 5, enrichment factors have been fouhe toetween 5.14
(PAF) and 15.6 (ACE). The overall average enrichment faistd8.48, showing

general validity of the approach.

The method presented here and all top-performing athgositit is compared to are
two-dimensional approaches. Two-dimensional similarity seagchigorithms often

lead to surprisingly good results. However, one hasetacdreful that this is not
simply due to the libraries used which often contaial@gue structures. Analogue

design is commonly successful in finding new active mdéscuand analogue
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molecules often contain identical substructures. Tweoedsional algorithms, which
are based on connectivity tables, easily detect these idestigstiructures. This is a
general problem of compiling databases for evaluatingbdagaretrieval performance
and affects all of the algorithms employed in thiskvor

Using single queries, Feature Trees, Atom Environments|&i& MOLSKEYS
perform considerably better than Daylight Fingerprints Hotbgram QSAR on the
test sets. The latter group has in common that it includesmation in addition to
local subgraph features, whereas the former group @ely kocal information. This is
the case because Feature Trees are commonly repeatedly cut kegfdregn ISIS
MOLKEYS use predefined fragments and Atom Environmenig @onsider an atom
and its neighbours at a maximum of two bonds apart. iR&sgr molecular

representation to local information might therefore bseful feature.

In addition, ISIS MOLSKEYS and Atom Environments eayplfeature selection.
ISIS MOLSKEYS considers only fragments occurring in &alip whereas in the case
of Atom Environments, fragments are explicitly selected. iQaylFingerprints, on
the other hand, consider every atom path in a certamndstrange and then fold the
information to give uniform length descriptors. The ladKeature selection or the
hashing and folding process seems to worsen the perfoemah this type of

descriptor.

All three virtual affinity fingerprint methods performorse than any of the two-
dimensional methods when applied to the test datasets.aMaftinity methods
consider the three-dimensional structure of the ligandadswl take the structure of
the receptor into account. Probably because of curresty strategies of library
design, as mentioned above, the performance of three-dimehsiotual affinity
fingerprint methods is generally seen to be lower than gérformance of two-
dimensional methods. Nonetheless, it is reported that-timeensional similarity
measures are able to detect similarities which two-dimeaisioathods are unable to
pick up [Briem 2000]. This would be true in particulathe case of conformationally

labile molecules which can achieve pharmacophoric patterns thanpogtant for
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activity or stereochemically important combinations whiah rawt encoded in the 2D
representation.

Briem [Briem 2000] gives more details about variationperformance among virtual
affinity fingerprint based techniques.
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6. CONCLUSIONS

In this paper we introduced the combination of atom enwents, information-gain
based feature selection and a Naive Bayesian Classifier tobéege similarity of
molecules. On average, our algorithm achieved an enrichmeot &i@bout 8 when
calculating the ten nearest neighbours of five datasets ciogtaictive structures. In
addition to this encouraging result, the algorithm waspared to several two- and
three-dimensional methods. Using single queries, itopad as well as the best
commonly used 2D algorithms while outperforming all 3Bthods. Using multiple
gueries, close-to-ideal hit rates are obtained. The technigoélb in this paper can
also be useful in identifying key functional groups iniactmolecules and is

computationally efficient.
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7. FUTURE WORK

We will explore further all three steps of similarity s#ang, i.e. description of
molecules, feature selection and learning of the model. \&k a&bsign properties
instead of Sybyl mol2 types to focus on similar chemicalp@nries instead of
identical atom types. Right now, we are only using exaatching, although fuzzy
matching (involving e.g. decay functions on comparisost@m environments) might
perform better (in fact, preliminary analyses are very priog)slt is also of interest
to deduce whether differences in performance are a wstlé descriptor used (e.g.
atom environments vs. ISIS MOLSKEYS) or of different isamty metrics (Bayes

Classifier vs. Bit String Similarity coefficients).
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