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SUMMARY 

 

A novel technique for similarity searching is introduced. Molecules are represented by 

atom environments, which are fed into an information-gain based feature selection. A 

Naïve Bayesian Classifier is then employed for compound classification. The new 

method is tested by its ability to retrieve five sets of active molecules seeded in the 

MDL Drug Data Report (MDDR). In comparison experiments, the algorithm 

outperforms all current retrieval methods which use two- and three-dimensional 

descriptors and offers insight into the significance of structural components for 

binding.  
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1. INTRODUCTION 

 

The question of how to describe similarity of molecules has become increasingly 

important over the last two decades and is likely to become even more important in 

the future. There are a number of reasons for this tendency.  

 

According to the 2003 report by the Tufts Center for Drug Development [DiMasi 

2003], costs of a single new chemical compound until the point of submission to 

approval has risen to US$ 802 million. This is due to high failure rates in later stages 

of drug development. Probably the “easiest cherries have already been picked” - drugs 

for easily tractable targets have already been found. Furthermore it is well known that 

in vitro and in vivo screenings are very expensive, compared to so-called in silico 

approaches. 

 Another major reason for the surge in similarity searching is the negative public 

opinion with respect to animal testing, so much that this results in its ban in home and 

personal care products in the European Union starting from 2009 [Europarl 2003].  

 

However, computers have become much more powerful and cheaper over the last 

years, thereby allowing in silico screening using larger databases and more 

sophisticated algorithms. Using appropriate similarity measures, it might become 

possible to predict properties like absorption, distribution, metabolism, excretion or 

toxicity (ADME/Tox) at an earlier stage of the research pipeline, reducing 

expenditure per successful compound [van de Waterbeemd 2003]. Only the most 

promising compounds will then be synthesized and screened, potentially yielding a 

higher fraction of active structures in the selected subset and higher survival rates.  

In order to avoid animal testing, cosmetics and other consumer goods companies will 

focus on their in-house databases of chemical compounds that have already been 

tested for safety. Out of these compounds, some of them might already possess the 

desired properties, which could be detected by similarity searching. 

 

The rest of the thesis is structured as follows. In section 2, a review of the literature on 

molecular representation and molecular similarity searching is given. Section 3 

presents experimental details. Results are given in section 4, which are discussed fully 
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in section 5. We draw conclusions in section 6 and outline possible further research 

directions in section 7. 
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2. LITERATURE REVIEW 

 

Similarity searching is based on the “Similar Property Principle” [Johnson 1991] that 

states that structurally similar molecules - structures with a “similar” spatial 

arrangement of “similar” functional groups - tend to have similar properties, physical 

as well as biological ones. All current drug design efforts are based on this paradigm.  

 

Similarity is a concept that is present in everyday life, e.g. in visual perception, and 

has thus been subject to intensive psychological research [Tversky 1977]. Many of the 

ideas behind similarity measures currently employed in comparison of molecules are 

rooted in psychology. An illustration of asymmetrical perception of similarity was 

given by Tversky [Tversky 1977]. He was asking whether North Korea was more 

similar to China, or that China was more similar to North Korea. A consistent answer 

(the former option of the two) was given by analysis of his test subjects; consistent 

with the ubiquitous finding that one representative of a class is also usually found to 

be more similar to the class than the class being similar to the member. This illustrates 

the origin of asymmetrical similarity measures. Rouvray gives a comprehensive 

overview of similarity applications in the natural sciences [Rouvray 1992]. 

 

The definition of similarity with respect to molecules is more stringent than that in 

other fields. Basically it consists of mapping “chemical space” (a representation of a 

molecule in structural or some property space) to one-dimensional space with entities 

of real numbers. Ideally similarity measures for molecules behave proportionally to 

all physical and biological properties of molecules in this representation. In other 

words, it groups together all molecules with very similar physical and biological 

properties in a confined area of chemical property space. In practice, we are far away 

from reaching this goal. As we will see in the following paragraphs, molecular 

representations have to this day only been applied to specific problems of molecular 

similarity. 

 

Similarity searches complement earlier substructure searches [Hagadone 1992] which 

only consider presence or absence of specific features but did not evaluate global 

properties and overall shape. Compared to substructure searches, similarity searches 
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are both more general and more comprehensive. They are more general by employing 

abstract representations of molecules or molecular properties and by being capable of 

using fuzzy matching techniques. Furthermore they are more comprehensive as they 

(usually) comprise features derived from the whole molecule under consideration. 

 

Molecular similarity calculations are done in three steps: representation of the 

molecules in descriptor space, feature selection, and comparison. The literature 

review in the following paragraphs will focus mainly on representation and 

comparison of molecules.  

 

 

a) Representation of Molecules 

 

A variety of methods to represent molecules in chemical space are known. Here we 

divide them into one-dimensional descriptors, topological indices, fragment-based 

descriptors, field-based descriptors, subshape descriptors, surface-derived descriptors, 

affinity fingerprints, spectra-derived descriptors, and back-projectable descriptors. 

 

The first group of descriptors give one-dimensional property descriptors or one-

dimensional linear representations of the whole molecule. One-dimensional property 

descriptions assign only one number to the molecule. This number is usually derived 

from physicochemical properties. This provides the basis for variable selection 

structure-activity regression techniques. Since no geometrical information is 

contained in the descriptor, they are most commonly employed for the prediction of 

physical properties as opposed to receptor binding. Good examples using this 

descriptor are clustering of compound databases [Downs 1994] and database 

comparisons (distinguishing between drugs/non-drugs [Jain 1998, Lipinski 1997, 

Lipinski 2000]). 

  One-dimensional linear representations attempt to represent the molecule as a linear 

tree where nodes represent atoms (or groups of atoms). This is similar to the 

representation of proteins in one-dimensional sequences of amino acids. To compare 

molecules, algorithms similar to protein sequence alignments can be applied to 
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compare two molecules [Dixon 2001]. An overview of methods to derive linear 

molecular descriptors is given in [Baumann 1999]. 

 

Topological indices and other graph-based descriptors constitute the second group of 

descriptors. Topological indices are integer or real-valued numbers that are derived 

from the connectivity matrix and sometimes they contain additional property 

information of the molecule. They are generally divided into three generations of 

indices. The first generation, such as the Wiener index, are derived from integer graph 

properties and are themselves integers. Second generation indices, such as the 

molecular connectivity indices, are real numbers derived from integer graph 

properties whereas indices of the third generation are real valued numbers derived 

from real valued graph properties.  Several hundred alternative topological descriptors 

have been published to this day [Wilkins 1980, Randic 1979; Balaban 1982].  One 

important aspect of topological indices is that they are derived solely from the 

connectivity matrix of a molecule and thus do not consider both conformations and 

three-dimensional structure. For a recent review on topological indices, see [Balaban 

1995] and [Estrada 2001]. 

 

The next group of descriptors are fragment or substructure based descriptors. 

Maximum common substructure (MCS) searches are among the earliest substructure 

searching algorithms used [Cone 1977]. These searches tend to be time-consuming 

due to the NP-complete nature of the problem which in the worst scenario becomes 

exhaustive. Recent advances can be found in [Barnard 1993]. Substructural analysis is 

often dubbed Free-Wilson-Analysis as Free and Wilson published one of the early 

works in this area [Free 1964, Cramer 1974]. It has been an active area ever since as 

more recent publications show [Gillet 1998]. Kier and Hall [Hall 1995] extended 

topological descriptors to include electronic and valence state information in their 

“electrotopological” descriptors, an approach that has later been extended to “E-state 

fields” [Kellogg 1996].  Rarey and co-workers [Rarey 1998] represent molecules as 

one-dimensional, potentially branched, sequences which they called “Feature Trees”. 

Other examples for fragment-based descriptors are [Takahashi 1992, Barnard 1993] 

using reduced graphs, [ Faulon 1994, Faulon 2003a, Faulon 2003b, Visco Jr. 2002], 

using “molecular tree” fingerprints and [Xing 2002, Xing 2003, Bender 2004] using 

related “Atom Environments”. “Mini fingerprints” also contain bits which denote the 
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presence or absence of fragments [Xue 2002, Xue 2001, Xue 1999]. A review of 

fragment-based measures of molecular similarity is given in [Bath 1994] which finds 

that a description using four-atom fragments is most effective. 

 

The group of field-based descriptors differs from the previous group in that they use 

three-dimensional information of a molecule for their derivation. Because of the 

number of data points (“grid points”) that are necessary for a sensible resolution, they 

are computationally more demanding than two-dimensional methods. Field-based 

descriptors generally require alignment of the molecules to be compared that is only 

trivial in case of analogue compounds. Many different methods have been developed 

in this area with the broad separation being between quantum-mechanical methods 

and non-quantum mechanical methods. Quantum Similarity has been introduced in 

the early 80’s [Carbó 1980] and since then it has been subjected to intensive research. 

Hodgkin [Hodgkin 1987] later introduced a related index that took into account not 

only electron distribution (such as the Carbó index) but also electron density. Walker 

[Walker 1991] and Good [Good 1992, Good 1993] replaced the grid approach with a 

Gaussian approximation. This lead to significant increase in performance. 

Furthermore it solved problems with local minima while performing molecular 

alignments. The Gaussian representation has later been generalized to describe 

molecular shape [Grant 1995]. For a review on quantum similarity, see [Carbo-Dorca 

1998], for a basic introduction to the subject see [Carbo 1992]. On the other hand, 

non-quantum mechanical grid based descriptors have been introduced in the late 

1980’s with the Comparative Molecular Field Method, CoMFA [Cramer 1988]. This 

method was also the basis of Klebe’s Comparative Molecular Similarity Analysis 

(CoMSIA) approach [Klebe 1994, Klebe 1998].  

 

The (sub-)shape based descriptors group describe the shape of a molecule not in one 

fragment, but instead use several small features to describe the molecules and find 

related structures by “circumstantial evidence”. These methods are free from 

alignment problems and are usually realized with a bit string representation of 

features that suits computer treatment. They are often referred to as multiple-point-

pharmacophores: two-point pharmacophores (2PP, [Sheirdan 1989, Good 1995b, 

Sheridan 1996]), which are known as atom pairs and represent all possible pairs of 

atoms in the molecule, three-point pharmacophores (3PP, [Gund 1977, Bemis 1992, 
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Nilakantan 1993, Pickett 1996, Mason 2001, Martin 1992]) which allow for a more 

detailed representation of interatomic distances, and four-point pharmacophores (4PP, 

[Mason 1999, Duca 2001]) which are able to distinguish between geometric isomers.  

 

The surface-based group descriptors focuses on the commonly accepted assumption 

that ligand-receptor binding is mediated by the molecular surface, e.g. by the Van-

der-Waals surface.  

• Gaillard et al [Gaillard 1994] devised a method to describe molecular 

lipophilicity potential and validated it by predicting logP values.  

• Stanton and Jurs [Stanton 1990] introduced the concept of “charged partial 

surface area structural descriptors” and derived descriptors describing surface 

charge from it.  

• Jain’s Compass method [Jain 1994] is able to take several molecules and 

several conformations into account, but it needs a user-defined interacting 

pharmacophore guess. This approach has also been used for selecting library 

subsets in its extension called Icepick [Mount 1999], where several 

conformations of the molecules to be compared are calculated and the three-

dimensional structures are docked into each other.  

• Jain [Jain 2000] introduced the concept of “morphological similarity” which is 

defined as a Gaussian function of the differences in molecular surface 

distances of two molecules at weighted observation points on a uniform grid; 

compared to field-based methods, this method has the advantage that no 

alignment is necessary.  

• A novel method for classifying similarity of molecules is performed by using 

hashkeys of the molecular surface, compared to a panel of reference 

compounds [Ghuloum 1999]. Applied to several data sets, the description is 

found to capture enough information for the prediction of ADME properties 

and target binding. Hash codes have already been applied in chemistry before 

[Ihlenfeldt 1994], but only for structure storage and not for structure-activity 

relationships. 

 

The group of affinity-fingerprint based descriptors compare a ligand to a panel of 

reference receptors and scores each ligand by docking it into each receptor. The 
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resulting affinity vector can then be used to create a similarity index for the group of 

ligands among each other. This approach is computationally demanding, because 

every ligand molecule has to be docked against every reference receptor molecule. On 

the other hand, the “expertise of the receptor” is the crucial property for finding 

ligands in vivo, so that more meaningful results may be retrieved from this approach. 

In vitro fingerprints were first introduced by Kauvar [Kauvar 1995] and shortly 

afterwards followed by in their in silico counterparts [Briem 1996, Lessel 2000]. The 

latter were for example employed in library design [Dixon 1998], for a recent review 

see [Briem 2000].  

 

The group of spectra-derived descriptors uses a “natural” way to derive a one-

dimensional representation of a molecule. X-ray and electron diffraction as well as 

infrared spectra have been used in this sense. The resulting spectra have to be 

converted into descriptor space, e.g. by calculating its zero crossings. The earliest 

work in this area was done by Soltzberg [Soltzberg 1976], who used molecular 

transforms to calculate the diffraction pattern from an X-ray derived three-

dimensional structure. Electron diffraction was also used in the 3D-MoRSE 

(Molecule Representation of Structures based on Electron diffraction) approach 

[Schuur 1996]. The first descriptor calculated from the vibrational spectra of 

molecules is the EVA descriptor [Ginn 1997]. Here, fundamental frequencies of the 

vibrational spectrum are calculated and used for the comparison of molecules. A 

different approach [Schoonjans 2001] defines fuzzy peak areas to derive molecular 

features from an infrared spectrum, followed by principal component analysis. 

Although spectra are a “natural” way to convert a molecule into a one-dimensional 

representation, small changes often introduce major changes in the spectrum and the 

representation in descriptor space. These changes often make it difficult to use this 

approach as a similarity index. 

 

The last and most recent group of molecular descriptors are the back-projectable 

descriptors. Those descriptors can be projected back on the molecules that were used 

to derive the descriptor in the first place and often hint at points where molecules can 

be optimised with respect to bioactivity. The first back-projectable descriptor was 

published by Pastor and co-workers [Pastor 2000] and was called GRIND (GRid 

INdependent Descriptors). First, a set of simplified molecular interaction fields 
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around the probe molecule is calculated. Commonly, a hydrophobic probe (DRY), an 

oxygen probe (O) and a nitrogen probe (N1) are used to distinguish between 

hydrophobic, hydrogen bond donor and hydrogen bond acceptor properties, 

respectively. In the second step, an alignment-independent descriptor based on 

autocorrelation is calculated. Another descriptor that falls into this area is the MaP 

(Mapping Property distributions of molecular surfaces) descriptor [Stiefl 2003]. This 

algorithm consists of three steps. Equally distributed surface points are computed first 

and then molecular properties are projected onto this surface. After that the 

distribution of surface points and properties is encoded into a translationally and 

rotationally invariant molecular descriptor which is based on radial distribution 

functions. An important feature of back-projectable descriptors is that they are easy to 

interpret. 

 

 

b) Comparison of Molecules 

 

Comparison of molecules is usually performed using either similarity coefficients or 

machine learning approaches.  

 

Several dozen similarity coefficients have been published. Similarity coefficients for 

the comparison of bit strings of molecules can be broadly divided into association, 

correlation and distance coefficients. Association coefficients try to capture fragments 

common to the two molecules to be compared and give a result in the range [0,1], 

where 1 represents identical molecules. The Tanimoto coefficient is an example of 

this class. Correlation coefficients give values in the same range and calculate the 

correlation between two vectors representing two molecules. The Pearson coefficient 

is a member of the class of correlation coefficients. Distance coefficients focus on 

differences between two molecules and are a measure of dissimilarity, giving results 

in the range [0, + inf]. One example is the Euclidean Distance.  

 

Early work by Willett [Willett 1986] concluded that similarity calculation based on 

the Tanimoto coefficient on average performed best, when a total of 36 similarity 

coefficients were compared. A group of 22 different similarity coefficients has been 
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evaluated by Holliday [Holliday 2002], who found that some of the coefficients were 

exhibiting similar behaviour and that they could be grouped into several clusters. 

Hubalek [Hubalek 1982] lists 43 association coefficients, and found that 20 of those 

were synonymous to other coefficients. The remaining 23 coefficients were clustered 

into five groups. 

 

On the other hand machine-learning approaches can be used to compare molecules. 

 

 Kernel Methods attempt to predict the output of a continuous output variable given 

continuous input variables. In drug-design, usually only the distinction between active 

and non-active entities is to be made. Then binary kernel methods are used, which can 

predict the output variable based on binary input vectors. One early publication on 

binary kernel methods was published by Aitchinson [Aitchison 1976]. He discusses 

the concept in general terms. More recently this concept has been revived by Harper 

[Harper 2001] and applied to a set of monoaminooxidase inhibitors.  

 

Binary QSAR is related to binary kernel discrimination in that it also accepts binary 

input values (e.g., presence/absence of structural keys), but the kernel is exchanged 

for a Bayesian classifier [Labute 1999, Gao 1999].  

 

Bayesian regularized artificial neural networks were employed [Burden 1999] to 

derive QSAR models, and perform better than regression methods that are not able to 

model nonlinearities in the model. 

 

Artificial Neural Networks (ANNs) have been used to distinguish drug-like and non-

drug-like molecules using a substructural analysis [Jain 1998]. So and Karplus [So 

1997] used electrostatic and steric properties at grid points for feeding a genetic 

artificial neural network in order to develop a QSAR model.  

 

Support Vector Machines (SVMs) attempt to learn the maximum separating boundary 

compared to Neural Networks which do not optimise the decision boundary if the 

prediction performance does not change. Compared to C5.0 decision trees, multi-layer 

perceptrons and other neural networks [Burbidge 2001], SVMs need less training time 

and achieve slightly better prediction performance. Using SVMs, Warmuth et al 
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[Warmuth 2003] implemented a concept of active learning. For other applications of 

Support Vector Machines in chemometrics, see [Czerminski 2001, Hearst 1998].  

 

King [King 1992, King 1995] and Srinivasan and King [Srinivasan 1999] applied 

inductive logic programming (ILP) to the field of activity of molecules.  

 

A general overview of structural representation, molecular similarity and virtual 

screening can be found in [Artymiuk 1992, Bures 1994, Livingstone 2000, Sheridan 

2002, Bajorath 2002, Bajorath 2001, Willett 1992, Willett 1995, Willett 1998, Willett 

2000, Walters 1998, Doucet 1996, Gillett 1998b, Good 1998]. An attempt to 

characterize molecular similarity methods is given in [Johnson 1991]. 

 

The method we present in the following section 3 is based on the 2-dimensional 

structure of molecules. It is derived from the connectivity table, thus not dependent on 

conformation and translationally as well as rotationally and conformationally 

invariant. Using the classification given above, it belongs to the group of subshape-

based molecular representations, combined with a machine learning approach in the 

form of a Naïve Bayesian Classifier for classification of structures. 
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3. EXPERIMENTAL DETAILS 

 

a) Descriptor Generation / Molecular Representation 

 

We use atom environments [Xing 2002] as a molecular representation. Atom 

environments are similar to Signature Molecular Descriptors [Faulon 2003a; Faulon 

2003b; Visco Jr. 2002; Faulon 1994]. They are translationally and rotationally 

invariant. Furthermore they do not depend on a particular conformation as they are 

calculated from the connectivity table. This makes generating atom environments less 

difficult compared to alignment-dependent approaches. Another benefit with atom 

environments is that they are easily interpretable, as they resemble the chemical 

concept of functional groups.  

 

We calculated atom environments in a two-step procedure (see Figure 1): 

 

1. Sybyl atom types [Clark 1989] are employed for the derivation of the 

environments. These are force-field atom types, which implicitly include 

molecular properties such as geometry. An individual atom fingerprint is 

calculated for every atom in the molecule. This calculation is performed using 

distances from 0 up to n bonds and keeping count of the occurrences of the 

atom types. The maximum distance n for descriptor generation has been varied 

from 1 to 3 for parameter optimization; details are given in section 3e. 

 

2. A count vector is constructed with the vector elements being counts of atom 

types at a given distance from the central atom. Every atom is described by 

exactly one count vector resulting in molecular atom environment fingerprints 

in which the number of atoms in a given molecule equals the number of count 

vector entries in the fingerprint.  
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Figure 1. Illustration of descriptor generation step, applied to an aromatic carbon 

atom. The distances (“layers”) from the central atom are given in brackets. In the first 

step, Sybyl mol2 atom types are assigned to all atoms in the molecule. In the second 

step, count vectors from the central atom (here C<0>) up to a given distance (here two 

bonds from the central atom apart) are constructed. Molecular Atom Environment 

fingerprints are then binary presence/absence indicators of count vectors of atom 

types. 

 

 

b) Feature Selection 

 

The information content of individual atom environments was computed using the 

information gain measure of Quinlan [Quinlan 1986, Glen 1992]. For a particular 

descriptor, higher information gain is related to better separation between active and 

inactive structures, for example.  

 

The information gain, I, can be given by  

 

Where  
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S is the information entropy; |S| is the total number of data sets; Sv is the information 

entropy in data subset v; and |Sv| is the number of data sets in subset v.  

In each run the number of selected features was varied between 10 and 100. 

 

 

c) Classification 

 

A Naïve Bayesian Classifier [Mitchell 1997] was employed as a classification tool. 

The Naïve Bayesian Classifier provides a simple yet surprisingly accurate machine-

learning tool [Mitchell 1997]. Trained with a given data set which consists of known 

feature vectors (F) and their associated known classes (CL), the Naïve Bayesian 

Classifier predicts the class that a new feature vector belongs to as the one with the 

highest probability of )|( FCLP m  which is given by 

 

)(

)|()(
)|(

FP

CLFPCLP
FCLP mm

m =    (1) 

 

Where  

P(CLm): probability of class m 

P(F): feature vector probability and 

P(F|CLm): probability of F given CLm 

m : class. 

 

In the Naïve Bayesian Classifier  

)|()|( ∏=
i

mim CLfPCLFP  

Where, fi are the feature vector elements. Hence for CLm , (1) becomes  

 

)(

)|()(
)|(

FP

CLfPCLP

FCLP i
mim

m

∏
= . 

 

In this work the data are classified into two classes (active and inactive, here referred 

to as 1 and 2 respectively). Therefore 
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We use this equation to do the classification i.e., all molecules are represented by their 

feature vectors F and the resulting ratios 
)|(

)|(

2

1

FCLP

FCLP
 are sorted in decreasing order. 

Molecules with the highest probability ratios are most likely to belong to class 1 (here 

the class of active molecules). Molecules with the lowest values are most likely to 

belong to class 2 (the class of inactive molecules). 

 

Note that the actual probability )|( 1 FCLP can be easily computed from 

)
)|(

)|(
ln(

2

1

FCLP

FCLP
 based on the fact that  1)|()|( 21 =+ FCLPFCLP . 

 

 

d) Compilation of Dataset and Pre-processing 

 

For evaluation of the algorithm, 957 ligands extracted from the MDDR database 

[MDL] were used [Briem 2000]. The set contains 49 5HT3 Receptor antagonists 

(from now on referred to as 5HT3), 40 Angiotensin Converting Enzyme inhibitors 

(ACE), 111 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase inhibitors (HMG), 

134 Platelet Activating Factor antagonists (PAF) and 49 Thromboxane A2 antagonists 

(TXA2). An additional 547 compounds were selected randomly and did not 

(according to MDDR) belong to any of these activity classes. 
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Structures were downloaded in SDF format and converted to Sybyl mol2 format using 

OpenBabel [OPENBABEL] 1.100.1 with the –d option to delete hydrogen atoms and 

default mol2 atom typing. Atom environment fingerprints were then calculated 

directly from mol2 files.  

 

 

e) Calculations 

 

Two separate validations of the method presented here were performed. In the first 

validation, cross-validation with random selection of query molecules was carried out 

to optimize the parameters related to descriptor generation and feature selection. A 

20-fold cross validation study selecting randomly five query structures for query 

generation and calculation of the average enrichment factors of the first 20 and 50 

molecules of the sorted library has been performed. The selection of five query 

structures is a realistic number if few ligands of a given target are known. In order to 

illustrate the influence of the number of structures chosen to generate the query on 

search performance, 20-fold random selection of 3, 5 and 10 structures has been 

performed, selecting 40 features in the feature selection step. An individual hit rate 

was calculated for each set of compounds based on the number of molecules within its 

ten nearest neighbours, which belong to the same activity class as the query 

compound. To create a query from multiple molecules, individual probabilities 

(relative frequencies) of features from a set of molecules are calculated and used in 

the feature selection step described in section 3b and the Naïve Bayesian Classifier 

described in section 3c. The maximum bond distance for generation of molecular 

descriptors, n, was varied from 1 to 3. In each run, the number of selected features 

was set to 10, 20, 30, 40, 50, 70 and 100, starting with the features associated with 

highest information gain. To examine the influence of very frequent and very rare 

features, this series of experiments has been repeated with a slight modification. 

Using identical settings for maximum bond distance and number of selected features, 

only features occurring at least three times, but not in more than max-3 molecules 

(with max being the number of molecules within the positive data set) were selected. 

To do so, features were chosen starting with those possessing the highest information 
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gain as above, but skipping rare and frequent features as defined here until the preset 

number of features was selected. For the best performing feature selection, cumulative 

recall plots were calculated for all five datasets of active compounds.  

In all calculations presented here, the inactive dataset containing all structures except 

those of the active class in each calculation was split in two subsets of equal size to 

create independent training and test sets. Each similarity calculation was carried out 

twice, using the active query and each of the two subsets and scoring the remaining 

active compounds and the inactive compounds not used to generate the model. The 

average score of the active structures from both runs was calculated. Both subsets of 

scored inactive structures and the set of active structures with associated average 

scores were concatenated to give the complete scored list of compounds used for 

further processing. As an example, for one validation run using a sample of the ACE 

inhibitor dataset we have drawn the query molecules, selected fragment features and 

highest scoring molecules.  

 

 In the second validation, for each of the 383 active compounds of the five classes of 

active compounds its ten nearest neighbours were calculated based on the similarity 

measure proposed in sections 3a – 3c. The maximum distance for descriptor 

calculation was set to 2 as it produced the best results in the first validation run as 

well as in additional validations which were performed. Identical values for selection 

of features as mentioned above have been applied. Exclusion of frequent and rare 

atom environments was not applied due to the use of single query molecules. An 

individual hit rate was calculated for each compound based on the number of 

molecules within its ten nearest neighbors, which belong to the same activity class as 

the query compound. Enrichment is observed when the hit rate among the nearest 

neighbors is higher than the fraction of the activity class under consideration in the 

whole data set. Enrichments have been averaged over all classes of active compounds, 

and the result was compared to that of other methods. 

Note that the nearest neighbour protocol of Briem [Briem 2000] has been followed in 

this validation to make it easy to compare the performance of our algorithm with 

commonly used methods. 

 



 22

4. RESULTS 

 

For the first validation, the influence of the maximum bond distance for creating the 

atom environment descriptor and the influence of the number of selected features on 

the average enrichment factor among the first 20 and the first 50 compounds of the 

ranked database are given in Table 1. Using atoms up to two bonds from the central 

atom for generating atom environment descriptors (n = 2) produces best results with 

enrichment factors of between 11 and 6.5 in the first 20 compounds and between 

about 4 and 2 in the first 50 compounds. Using three layers for construction of the 

descriptor still gives enrichment of more than 3 in most cases of feature selection 

whereas using only the first layer adjacent to the central atom produces virtually no 

enrichment, independent of the method used for feature selection.  

 

Number of Selected 

Features 

Enrichment 

Top 20, n=1 

Enrichment 

Top 50, n=1 

Enrichment 

Top 20, n=2 

Enrichment 

Top 50, n=2 

Enrichment 

Top 20, n=3 

Enrichment 

Top 50, n=3 

10 0.00 0.00 9.56 3.82 3.50 1.40 

20 0.00 0.00 7.80 3.12 3.50 1.40 

30 0.00 0.00 9.95 3.98 3.50 1.40 

40 0.00 0.00 11.06 4.42 3.50 1.40 

50 0.00 0.00 10.42 4.17 2.92 1.17 

70 0.00 0.00 9.45 3.78 3.11 1.24 

100 0.00 0.00 6.52 2.61 0.19 0.08 

10, m>2, m<max-2 0.00 0.00 7.33 2.93 3.50 1.40 

20, m>2, m<max-2 0.00 0.00 8.58 3.43 3.50 1.40 

30, m>2, m<max-2 0.00 0.00 9.20 3.68 3.50 1.40 

40, m>2, m<max-2 0.00 0.00 10.28 4.11 3.50 1.40 

50, m>2, m<max-2 0.00 0.00 10.13 4.05 3.50 1.40 

70, m>2, m<max-2 0.07 0.03 8.99 3.59 3.50 1.40 

100, m>2, m<max-2 0.07 0.03 4.89 1.96 0.19 0.08 

 

Table 1. Enrichment factor averaged over all five classes of active compounds upon 

varying the number of selected features and the maximum depth, n, used to create the 

atom environment descriptor. A fixed number of features were selected and rare and 

frequent fragments were excluded. This is denoted by m>2, m<max-2, meaning that 
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features had to occur at least three times, but at most as often as the total number of 

active molecules (max) minus three times. In situations where very low enrichment 

factors were obtained many molecules were assigned identical scores, thus producing 

artefacts (enrichment factors of 0) in this table. 

 

A visualization of enrichment factors, which depend on the number of selected 

features, is given in Figure 2. In this case, the bond level for descriptor generation, n, 

has been set to n = 2 because it performed best as shown in Table 1. Exclusion of 

frequent and rare features does not perform as well as selection of a fixed number of 

features, and it is not shown in the figure. 
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Figure 2. Enrichment factor, averaged over all five groups of active compounds, 

using atoms up to 2 bonds apart from the central atom to construct the atom 

environment descriptor and a variable number of selected features for classification. 

 

 

We have found that feature selection has its optimum at a selection of 40 features with 

respect to enrichment factors observed among the first 20 and among the first 50 

highest-scoring structures of the sorted library. If fewer or more features are selected, 

performance of the algorithm continuously decreases.  
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The influence of the number of structures chosen to generate the query on search 

performance is shown in Table 2. Results using single structures to generate the active 

query are presented later and are included here for completeness. In every case except 

one (going from 5 to 10 query structures using ACE inhibitors), performance 

improves as the number of compounds used for query generation increases. The 

average deviation in performance between different sets of query compounds 

decreases if the size of the query data set is increased. Again, the only exception is if 

the number of ACE inhibitors used to generate the query is increased from 5 to 10 

structures. 

 

No. of 

query 

structures 

5HT3 
Std.-

Dev. 
ACE 

Std.-

Dev. 
HMG 

Std.-

Dev. 
PAF 

Std.-

Dev. 
TXA2 

Std.-

Dev. 
Mean 

Mean 

Std.-

Dev 

1 5.65 4.26 6.40 2.96 7.90 2.75 7.15 2.25 6.40 3.27 6.70 3.10 

3 8.55 1.73 6.70 2.64 9.30 0.92 9.15 1.57 8.30 1.13 8.40 1.60 

5 9.25 1.02 9.10 0.64 9.50 0.83 9.15 0.82 8.15 1.04 9.03 0.87 

10 9.30 1.03 8.80 1.51 9.70 0.57 9.25 0.72 8.95 0.76 9.20 0.92 

 

Table 2. Average hit rates among the ten nearest neighbors in a cross validation 

study. Shown here are the hit rates and the standard deviations among different data 

set sizes used to generate the query. 

 

 

For the best performing method using 40 features with the highest information gain, 

cumulative recall plots are given in Figure 3. These plots were calculated using the 

20-fold random selection of five queries for ranking of the library and screening for 

the remaining active compounds. The five datasets can be classified into two groups: 

The 5HT3, HMG and PAF datasets belong to one group as some of their active 

molecules are found only after evaluating half of the sorted library. ACE and TXA2 

belong to the second group with all active molecules found well within the first 40% 

of the sorted library. 
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Figure 3. Cumulative recall plot of all five datasets, using atoms up to two bonds 

apart from the central atom for descriptor generation and 40 features associated with 

the highest information gain for classification. 

 

 

In order to gain an insight into the algorithm, query molecules, selected features and 

the highest scoring structures of the sorted library have been plotted for a sample run 

using angiotensin converting enzyme inhibitors (ACE inhibitors). The design of ACE 

inhibitors originally followed the hypothesis that ACE had binding site homology 

with carboxypeptidase-A [Cushman 1977]. A number of interaction sites were 

proposed based on analogue design, shown in Figure 4. 
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Figure 4. Snake venom peptide analogue with putative binding motif to angiotensin 

used in early compound design [Cushman 1977]. 

 

A recent crystallographic study of an ACE inhibitor, lisinopril (N2-[(S)-1-carboxy-3-

phenylpropyl]-L-lysyl-L-proline), has revealed the binding site interactions in some 

detail [Natesh 2003]. Much of the originally deduced binding site topology is seen in 

the crystal structure with some notable differences such as the absence of the C-

terminal carboxylate arginine interaction. The selection of features associated with a 

significant information gain in separating the classes of ACE and non-ACE inhibitors 

can be compared with the crystallographically determined binding motif. It may be 

expected that those interactions that are seen crystallographically may also emerge 

from the analysis of the analogues as being important. 

The 5 molecules used to construct the query are shown in Figure 5, the 10 selected 

features giving the highest information gain are given in Table 3 and the 10 highest 

ranked structures from the sorted library are shown in Table 4.  
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Figure 5.  Five active molecules from the dataset of ACE inhibitors, used to construct 

the query and perform feature selection. 
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C<3>
C<3>

C<ar>
C<3>

C<2>

N<3>

C<2>

O<co2>

C<3> O<co2>

N<am>

N<3>

C<3>

C<3>

C<2>

C<3>

C<2>

C<3>

O<2>

C<2>

N<am>C<3>

C<3>

C<3>

C<2>

O<2>

N<am>

N<3>

C<3>

C<3>
O<2>

C<2>
C<ar>

C<ar>

C<ar>

C<3>

C<3>
C<2>N<3>

 

Selected Feature 
Information Gain 

Associated with this Feature 

Putative Interaction Site on 

ACE 

 

0.0171 S2 

 

0.0141 Zn++ 

 

0.0127 S2 

 
0.0118 S1 

 
0.0114 XH/Zn++ 

C<ar>
C<3>

C<3>

C<ar>

C<ar>

C<ar>

C<ar>

 

0.0104 S1 

0.0096 S2/+ 

0.0086 S1 
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C<3>
C<2>

O<co2>

O<co2>
N<3>

C<3>

C<3>

C<3>

C<3>

C<3>

C<ar>

C<ar>

N<am>
C<2>

C<3>

 

0.0083 S2/+ 

 

0.0083 S2 

 

Table 3. Ten features associated with the highest information gains from a sample run 

using 5 inhibitors from the ACE dataset. 
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N

O
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O
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Table 4. Top 10 ranking molecules of the sorted library. Out of these, seven are active 

ACE inhibitors and three are inactive molecules in this respect. 

 

 

The selected features, given in Table 3, possess carbon, nitrogen as well as oxygen 

atoms as central atoms. Some analysis of the selected features with respect to the 

experimentally determined interaction of ligands within the ACE binding site is given 

in the discussion section.  
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In the second validation, the number of active molecules among the ten nearest 

neighbours of each individual active molecule from each dataset was calculated 

following the protocol of Briem and Lessel [Briem 2000]. Feature selection was 

performed selecting 10, 20, 30, 40, 50, 70 and 100 features. Hit rates, averaged over 

all five classes of active compounds are given in Figure 6. 

 

Figure 6. Mean hit rates among the ten nearest neighbours of the Briem data set, 

averaged over all five classes of active compounds, depending on the number of 

selected features. 

 

An optimum can be seen at the selection of 20 features. If more or less features are 

used for classification, performance declines continuously. The individual hit rates for 

each group, using the best-performing selection of 20 features, are given in Table 5. 

The average number of active compounds among the top 10 ranked compounds varies 

from about 5.65 (5HT3) to about 7.90 (HMG), with an overall average of 6.70. These 

numbers, taking into account the variable number of active structures in each active 

subset result in enrichment factors between 5.14 (PAF) and 15.6 (ACE). The overall 

average enrichment factor calculates to 8.48, which is significantly higher than the 

value of 1 that would be achieved in a random selection.  
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Table 5. Performance of the Atom Environment Approach by measuring mean 

sample hit rates of the ten top-scored compounds in the sorted hit list. Feature 

selection was performed selecting 20 features associated with the highest information 

gain. 

 

The nearest neighbour protocol of Briem [Briem 2000] has been followed in this 

validation to enable ease of comparison of the algorithm performance with established 

methods. The methods used for comparison are Feature Trees [Rarey 1998], ISIS 

MOLSKEYS [ISIS], Daylight Fingerprints [DAYLIGHT], SYBYL Hologram QSAR 

Fingerprints [SYBYL] and FLEXSIM–X [Lessel 2000], FLEXSIM–S [Lemmen 

1998] and DOCKSIM [Briem 1996] virtual affinity fingerprints. Feature Trees 

represent molecules as trees (acyclic graphs), which are subsequently matched for 

comparison. In current versions, FlexX interaction profile and Van-der-Waals radii 

have been used as descriptors and a size-weighted ratio of fragments is used to 

calculate a similarity index. ISIS MOLSKEYS use 166 predefined two-dimensional 

fragments for describing a structure. Daylight Fingerprints are algorithmically 

generated and describe atom paths of variable length: they are commonly folded and a 

1024 bits long bit string is used. Hologram QSAR is an extension of 2D fingerprints 

and additionally includes branched and cyclic fragments as well as stereochemical 

information. For all 2D and 3D descriptors, Euclidean distances were calculated for 

each possible combination of test ligands. The performance of the algorithm presented 

here compared to established methods is shown in Figure 7.  

 

Performance of the Atom Environment Approach, Selecting 20 Features 

Group of Active Compounds 5HT3 ACE HMG PAF TXA2 Overall 

Expected Hit Rate 0.50 0.41 1.15 1.39 0.50 0.79 

Average Number of Active 

Compounds Among Top 10 

Ranked Compounds 

5.65 6.40 7.90 7.15 6.40 6.70 

Enrichment Factor 11.0 15.6 6.87 5.14 12.8 8.48 
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Figure 7. Mean sample hit rates of the Atom Environment approach (black), in 

comparison to the methods applied by Briem (light grey). The performance of the 

Atom Environment approach is shown using single queries and randomly selected 

subsets of five query molecules. 

 

Shown here are mean sample hit rates as averaged over all five classes of active 

compounds. Using one query structure, this method outperforms all three virtual 

affinity fingerprint algorithms as well as two of the two-dimensional methods, 

Daylight Fingerprints and SYBYL Hologram QSAR Fingerprints. It performs as well 

as ISIS MOLSKEYS fingerprints and is only (marginally) outperformed by the 

Feature Tree approach. The top three methods are of comparable performance, 

however the atom environments approach additionally deduces those fragments 

having the greatest influence on similarity and is significantly faster than Feature 

Trees and therefore of utility in searching larger databases.  

Using five query structures, the Atom Environment approach achieves a mean sample 

hit rate of greater than 90%. 
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The computation of molecular fingerprints was implemented in C programming 

language and was able to process about 1000 molecules per second on a Pentium III-

1GHz workstation. Feature selection and scoring was implemented in Perl and was 

able to evaluate one molecule against the 956 remaining compounds of the dataset in 

one second, using identical hardware. 
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5. DISCUSSION 

 

The first series of runs was performed to optimize parameters of the algorithm for 

typical database screenings where several active compounds are known. As Table 1 

shows, the algorithm only gives sensible results when the atom environment 

descriptor is constructed using atoms up to two bonds apart from the central atom. If 

less than two bonds are considered, atom environments are ambiguous and do not 

capture enough information about the atom environment. If more than two bonds are 

considered, they tend to become unique so no generalization capability is acquired. 

This result is in agreement with the results found by Faulon et al. [Faulon 2003; 

Faulon 2003b]. Optimum performance is found with the selection of 40 features. This 

is the result for queries derived from five query structures and applies across the five 

different sets of active molecules used. Fewer features do not allow the classification 

of each molecule reliably (by recognizing a certain number of its atom environments) 

and more features appear to introduce noise into the system thus reducing its 

classification ability. 

 

The performance of the algorithm generally increases if more and more structures are 

used to generate the query (Table 2), as well as the standard deviation in performance 

between different sets of query structures decreases. Using five query structures, 

Atom Environments outperforms other methods by a large margin (Figure 7), giving 

mean sample hit rates of about 90%. These hit rates are not directly comparable, 

because information from multiple structures is used to formulate the query. 

Nonetheless, it shows that the algorithm is capable of handling information from 

multiple molecules reliably. For real-world applications, it appears that all active 

molecules across the range of structural diversity could be used in order to train the 

classifier used in this method.  

 

The five datasets used can be classified into two groups. In one group, comprising the 

5HT3, HMG and PAF datasets, hits are still found among lower ranked molecules 

(Figure 3). Apparently, there are molecules in these groups of datasets which do not 

possess close analogues in the training and the test set. In the other group, comprising 

ACE and TXA2, all active molecules are easily found in the first half of the focused 
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library. The molecules in these classes of active compounds seem to be more similar 

to each other. 

 

Overall the selection of fragments of ACE inhibitors seems consistent with the 

binding information deduced crystallographically [Natesh 2003]. The five fragments 

associated with the highest information gain given in Table 3 correspond to the 

binding motif of enalapril and captopril including the zinc binding site and the S2 and 

S1 sites in the top rank. Among the 10 highest scoring molecules of the sorted library 

listed in Table 4, seven are known active ACE inhibitors while three are not tested 

with respect to ACE inhibitor activity. The inactives (which of course, may be active 

– the data on these molecules in MDDR do not include ACE assay results) are 

peptidic, larger than small molecule analogues and contain many peptidic 

environments common to the natural substrates. Elimination of such peptidic moieties 

would give (in this case) an ideal result. A penalty factor for molecules larger than the 

probe molecules (a scoring relative to size) could be used. 

 

When calculating the hit rate of the ten nearest neighbours of each individual active 

molecule (i.e. using one molecule to retrieve its neighbours from the remaining 

database), an optimum in classification is obtained if 20 features are selected (Figure 

6). This is a different result from that observed in those runs where five molecules are 

used to derive the query. In those cases, the optimum feature number was seen to 

increase to 40 features. In single molecule queries, one active molecule containing 

only a small number of atom environments is used. An increase in the number of 

features thus exceeds the number of environments present in many molecules. 

Therefore, there is no gain in including additional features.  

As described in Table 5, enrichment factors have been found to be between 5.14 

(PAF) and 15.6 (ACE). The overall average enrichment factor is 8.48, showing 

general validity of the approach.  

 

The method presented here and all top-performing algorithms it is compared to are 

two-dimensional approaches. Two-dimensional similarity searching algorithms often 

lead to surprisingly good results. However, one has to be careful that this is not 

simply due to the libraries used which often contain analogue structures. Analogue 

design is commonly successful in finding new active molecules and analogue 
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molecules often contain identical substructures. Two-dimensional algorithms, which 

are based on connectivity tables, easily detect these identical substructures. This is a 

general problem of compiling databases for evaluating database retrieval performance 

and affects all of the algorithms employed in this work.  

 

Using single queries, Feature Trees, Atom Environments and ISIS MOLSKEYS 

perform considerably better than Daylight Fingerprints and Hologram QSAR on the 

test sets. The latter group has in common that it includes information in addition to 

local subgraph features, whereas the former group only uses local information. This is 

the case because Feature Trees are commonly repeatedly cut before matching, ISIS 

MOLKEYS use predefined fragments and Atom Environments only consider an atom 

and its neighbours at a maximum of two bonds apart. Restricting molecular 

representation to local information might therefore be a useful feature. 

 

In addition, ISIS MOLSKEYS and Atom Environments employ feature selection. 

ISIS MOLSKEYS considers only fragments occurring in a library whereas in the case 

of Atom Environments, fragments are explicitly selected. Daylight Fingerprints, on 

the other hand, consider every atom path in a certain distance range and then fold the 

information to give uniform length descriptors. The lack of feature selection or the 

hashing and folding process seems to worsen the performance of this type of 

descriptor.  

 

All three virtual affinity fingerprint methods perform worse than any of the two-

dimensional methods when applied to the test datasets. Virtual affinity methods 

consider the three-dimensional structure of the ligand and also take the structure of 

the receptor into account. Probably because of currently used strategies of library 

design, as mentioned above, the performance of three-dimensional virtual affinity 

fingerprint methods is generally seen to be lower than the performance of two-

dimensional methods. Nonetheless, it is reported that three-dimensional similarity 

measures are able to detect similarities which two-dimensional methods are unable to 

pick up [Briem 2000]. This would be true in particular in the case of conformationally 

labile molecules which can achieve pharmacophoric patterns that are important for 
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activity or stereochemically important combinations which are not encoded in the 2D 

representation. 

 

Briem [Briem 2000] gives more details about variations in performance among virtual 

affinity fingerprint based techniques. 
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6. CONCLUSIONS 

 

In this paper we introduced the combination of atom environments, information-gain 

based feature selection and a Naïve Bayesian Classifier to describe the similarity of 

molecules. On average, our algorithm achieved an enrichment factor of about 8 when 

calculating the ten nearest neighbours of five datasets containing active structures. In 

addition to this encouraging result, the algorithm was compared to several two- and 

three-dimensional methods. Using single queries, it performs as well as the best 

commonly used 2D algorithms while outperforming all 3D methods. Using multiple 

queries, close-to-ideal hit rates are obtained. The technique described in this paper can 

also be useful in identifying key functional groups in active molecules and is 

computationally efficient.  
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7. FUTURE WORK 

 

 

We will explore further all three steps of similarity searching, i.e. description of 

molecules, feature selection and learning of the model. We shall assign properties 

instead of Sybyl mol2 types to focus on similar chemical properties instead of 

identical atom types. Right now, we are only using exact matching, although fuzzy 

matching (involving e.g. decay functions on comparison of atom environments) might 

perform better (in fact, preliminary analyses are very promising). It is also of interest 

to deduce whether differences in performance are a result of the descriptor used (e.g. 

atom environments vs. ISIS MOLSKEYS) or of different similarity metrics (Bayes 

Classifier vs. Bit String Similarity coefficients). 
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